CONCLUSION

Final assessment of ratings

Tolerance

Calculation of 50% and 75% second 8 post measured variables

INTRODUCTION

Important components of intrinsic pain regulatory systems are modulated by cardiovascular dynamics that influence baroreceptor sensitivity (BRS). The present study evaluated the effects of extinction training combined with electrical stimulation administered during either the sympathetic or diastolic phases of the cardiac cycle delivered in a randomized order (“sympathetic extinction training”, SET) in patients with fibromyalgia syndrome (FMS). SET was compared to treatment with extinction training combined with electrical stimulation delivered independent of the cardiac cycle a ‘placebo’ condition (PC).

METHOD

Forty patients who fulfilled the American College of Rheumatology criteria for FMS and showed an elevated blood pressure response to a laboratory stressor termed hypertensive stress reactivity were randomly assigned to SET (n = 20), or PC (n = 20). Assessments of clinical pain, pain threshold, baroreflex sensitivity (BRS), blood pressure and heart rate, cognitive and behavioural variables as well as sleep architecture and sympathetic outflow measured by microdialgy were performed pretreatment and post-treatment as well as 6 to 12 months posttreatment.

RESULTS.

Both sensory and pain threshold as well as pain tolerance increased significantly immediately and 6-12 months after SET.

Figure 3. Changes of sensory, pain thresholds and pain tolerance immediately and 6-12 months after SET.

Figure 4. Changes of BRS immediately and 6-12 months after SET and PC.

The pain reduction was associated with a significant increase in BRS.

Figure 5. Changes in blood pressure, EMG and physical activity after SET and PC.

Figure 6. Decrease of the sympathetic outflow after SET

CONCLUSION

These results suggest that SET is effective in treating patients with FMS producing long lasting pain remission. Furthermore, the findings show that the [1] greater blood pressure responses to stress predict a greater reduction in clinical pain report and [2] increase in physical activity observed following SET is associated with a restoration of BRS, cortical pain inhibition, sympathetic outflow and sleep architecture. Even though baseline BRS is diminished in FMS patients, electrical stimulation delivered in a manner dependent on cardiac cycle phase when combined with extinction training is highly effective in reducing pain and restoring functions in a FMS subgroup characterized by hypertensive blood pressure stress reactivity.

Design of Systolic Extinction Training - SET

10 Sessions with 2 hours in 5 weeks

Hour 1: Structured Extinction Training with Training of Perception and Increase of Physical Activity

Hour 2: BRS modifying Stimulation by delivering pain-free and two clinical pain stimuli adjusted by individual pain tolerance dependent on cardiac cycle

Figure 1. Design of SET

Figure 2. Changes of clinical pain immediately and 6-12 months after SET and PC

Figure 3. Changes of sensory, pain thresholds and pain tolerance immediately and 6-12 months after SET

Figure 4. Changes of BRS immediately and 6-12 months after SET and PC

Figure 5. Changes in blood pressure, EMG and physical activity after SET and PC

Figure 6. Decrease of the sympathetic outflow after SET

Figure 7. Restoration of sleep architecture after SET

K. Thieme1,4, PhD, H. Kraemer2, MD, U. Koehler3, MD, T. Meller1, MA, R. Malinowskir1, MA, W. Maixner4, DSS, PhD, R.H. Gracey1, PhD

1 Department of Medical Psychology, Phillips-University of Marburg, Germany, 2Hospital of Neurology, Univ. of Giessen, Giessen, Germany, 3Sleep Med., Philippus Univ. of Marburg, Marburg, Germany, 4Ctr. for Pain Res. and Innovation, Univ. of North Carolina, Chapel Hill, NC, USA

METHOD

Forty patients who fulfilled the American College of Rheumatology criteria for FMS and showed an elevated blood pressure response to a laboratory stressor termed hypertensive stress reactivity were randomly assigned to SET (n = 20), or PC (n = 20). Assessments of clinical pain, pain threshold, baroreflex sensitivity (BRS), blood pressure and heart rate, cognitive and behavioural variables as well as sleep architecture and sympathetic outflow measured by microdialgy were performed pretreatment and post-treatment as well as 6 to 12 months posttreatment.

RESULTS.

Both sensory and pain threshold as well as pain tolerance increased significantly immediately and 6-12 months after SET.

Figure 3. Changes of sensory, pain thresholds and pain tolerance immediately and 6-12 months after SET

Figure 4. Changes of BRS immediately and 6-12 months after SET and PC

The pain reduction was associated with a significant increase in BRS.

Figure 5. Changes in blood pressure, EMG and physical activity after SET and PC

Figure 6. Decrease of the sympathetic outflow after SET

CONCLUSION

These results suggest that SET is effective in treating patients with FMS producing long lasting pain remission. Furthermore, the findings show that the [1] greater blood pressure responses to stress predict a greater reduction in clinical pain report and [2] increase in physical activity observed following SET is associated with a restoration of BRS, cortical pain inhibition, sympathetic outflow and sleep architecture. Even though baseline BRS is diminished in FMS patients, electrical stimulation delivered in a manner dependent on cardiac cycle phase when combined with extinction training is highly effective in reducing pain and restoring functions in a FMS subgroup characterized by hypertensive blood pressure stress reactivity.

Design of Systolic Extinction Training - SET

10 Sessions with 2 hours in 5 weeks

Hour 1: Structured Extinction Training with Training of Perception and Increase of Physical Activity

Hour 2: BRS modifying Stimulation by delivering pain-free and two clinical pain stimuli adjusted by individual pain tolerance dependent on cardiac cycle

Figure 1. Design of SET

Figure 2. Changes of clinical pain immediately and 6-12 months after SET and PC

Figure 3. Changes of sensory, pain thresholds and pain tolerance immediately and 6-12 months after SET

Figure 4. Changes of BRS immediately and 6-12 months after SET and PC

Figure 5. Changes in blood pressure, EMG and physical activity after SET and PC

Figure 6. Decrease of the sympathetic outflow after SET

Figure 7. Restoration of sleep architecture after SET

K. Thieme1,4, PhD, H. Kraemer2, MD, U. Koehler3, MD, T. Meller1, MA, R. Malinowskir1, MA, W. Maixner4, DSS, PhD, R.H. Gracey1, PhD

1 Department of Medical Psychology, Phillips-University of Marburg, Germany, 2Hospital of Neurology, Univ. of Giessen, Giessen, Germany, 3Sleep Med., Philippus Univ. of Marburg, Marburg, Germany, 4Ctr. for Pain Res. and Innovation, Univ. of North Carolina, Chapel Hill, NC, USA